The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.