Employing selenocysteine-containing protein fragments to form the amide bond between respective protein fragments significantly extends current capabilities of the widely used protein engineering method, expressed protein ligation. Selenocysteine-mediated ligation is noteworthy for its high yield and efficiency. However, it has so far been restricted to solid-phase synthesized seleno-peptides and thus constrained by where the selenocysteine can be positioned. Here we employ heterologously expressed seleno-fragments to overcome the placement and size restrictions in selenocysteine-mediated chemical ligation. Following ligation, the selenocysteine can be deselenized into an alanine or serine resulting in non-selenoproteins. This greatly extends the flexibility in selecting the conjugation site in expressed protein ligations with no influence on native cysteines. Furthermore, the selenocysteine can be used to selectively introduce site-specific protein modifications. Therefore, selenocysteine-mediated expressed protein ligation simplifies incorporation of posttranslational modifications into the protein scaffold.