Psoralen plus ultraviolet A (PUVA) and narrowband ultraviolet B (UVB) are widely used in skin disease phototherapy. Recently, the efficacy of UVB therapy has been greatly improved by narrowband UVB, compared to conventional broadband UVB. The objectives of the current study were to evaluate the influence of UVB-induced and PUVA-induced oxidative stress on cultured keratinocytes. We analyzed 8-hydroxy-2′ ′ ′ ′-deoxyguanosine (8-OH-dG) in human keratinocytes (HaCaT cell line) using a highperformance liquid chromatography system equipped with an electrochemical detector. Non-irradiated human keratinocytes contained a baseline of 1.48 ± ± ± ± 0.22 (mean ± ± ± ± SD) 8-OH-dG per 10 6 deoxyguanosine (dG) residues in cellular DNA, which increased linearly with higher doses of UVB. When their abilities to induce 8-OH-dG were compared to each other, based on the minimal erythemal and therapeutically used doses, by irradiating them with broadband UVB at 100 mJ/cm 2 , the amount of 8-OH-dG increased to 3.42 ± ± ± ± 0.46 residues per 10 6 dG, while a narrowband UVB treatment at 1000 mJ/cm 2 , with biological effects comparable to those elicited by 100 mJ/cm 2 broadband UVB, increased it to 2.06 ± ± ± ± 0.31 residues per 10 6 dG. PUVA treatment, with 100 ng/mL 8-methoxypsoralen and 5000 mJ/cm 2 UVA, increased the 8-OH-dG level to 4.52 ± ± ± ± 0.42 residues per 10 6 dG. When HaCaT cells treated with 2000 mJ/cm 2 narrowband UVB were cultured and the amount of 8-OH-dG was monitored in the living cells, 65.6% of the residues were repaired 24 h after treatment. Our study provides a warning that widely used narrowband UVB and PUVA induce cellular oxidative DNA damage at the therapeutically used doses, although to a lesser degree than broadband UVB with the same clinically effective dose. (Cancer Sci 2006; 97: 99 -105) E ight-hydroxy-2′-deoxyguanosine (8-OH-dG), also known as 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), (1) has been proposed as a key biomarker of oxidative DNA damage relevant to carcinogenesis (1,2) and pathogenesis of autoimmune disorders. (3,4) This DNA damage is induced by the reactions of reactive oxygen species (ROS), such as hydrogen peroxide (H 2 O 2 ), superoxide anions ( ), singlet oxygen and hydroxyl radicals (·OH).Human skin is constantly exposed to environmental stresses, and is vulnerable to the effects of ROS generated by exposure to ultraviolet (UV) radiation.(5) Yamamoto et al. (6) reported that the formation of 8-OH-dG in DNA might be one of the mechanisms of daylight-induced mutagenesis. In fact, irradiation with a fluorescent sun lamp or with UVB does induce 8-OH-dG in the epidermis of hairless mice. (7,8) Parrish and Jaenicke (9) found that 313 nm UVB radiation is the most effective wavelength for the treatment of psoriasis. This finding provided the impetus for developing the Philips TL-01 fluorescent bulb, a narrowband UVB light source that produces a spectral emission between 310 and 315 nm. Narrowband UVB phototherapy has thus significantly improved the therapeutic efficacy of conventional br...