Wounding of potato (Solanum tuberosum L.) tubers induces the development of a suberized closing layer and wound periderm that resists desiccation and microbial invasion. Wound-healing ability declines with tuber age (storage period). The mechanism of loss in healing capacity with age is not known; however, upregulation of superoxide production, increased ABA biosynthesis and phenylalanine ammonia lyase (PAL) activity in response to wounding are processes critical to the development of a suberized closing layer and wound periderm. Therefore, the role of ABA in modulating the age-induced loss of wound-healing ability of tubers was examined. Non-wounded older tubers had 86% less ABA (dry matter basis) than younger tubers. PAL transcript increased in younger tubers within 24聽h of wounding, but transcription was delayed by 5聽days in older tubers. Wound-induced PAL activity increased more rapidly in younger than older tubers. ABA treatment increased PAL expression and activity in tissue from both ages of tubers and restored the 24聽h transcription time line in older tubers. Moreover, ABA treatment of wounded older tubers enhanced their resistance to water vapor loss following a 6-day wound-healing period. Wound-induced accumulation of suberin poly(phenolic(s)) (SPP) and suberin poly(aliphatic(s)) (SPA) was measurably slower in older versus younger tubers. ABA treatment hastened SPP accumulation in older tubers to match that in younger tubers, but only enhanced SPA accumulations over the initial 4聽days of healing. Age-induced loss of wound-healing ability is thus partly due to reduced ability to accumulate ABA and modulate the production of SPP through PAL in response to wounding and to dysfunction in the downstream signaling events that couple SPA biosynthesis and/or deposition to ABA. ABA treatment partly restored the healing ability of older tubers by enhancing the accumulation of SPP without restoring wound-induced superoxide forming ability to the level of younger tubers. The coupling of phenolic monomers into the poly(phenolic) domain of suberin was therefore not limited by the diminished wound-induced superoxide production of older tubers.