2015
DOI: 10.1007/s10854-015-3367-7
|View full text |Cite
|
Sign up to set email alerts
|

Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties

Abstract: Oxygen is introduced in germanium during crystal growth and processing and can lead to the formation of clusters that may impact the performance of devices. Therefore the understanding of its properties in germanium over a wide temperature range is important. Here we employ the so-called cBX model in which the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (X) to describe oxygen diffusion in germanium. The model describes oxygen diffusion in germanium in the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
8
0
4

Year Published

2016
2016
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(14 citation statements)
references
References 34 publications
2
8
0
4
Order By: Relevance
“…[60][61][62][63][64] The results, which are summarized in Table I and compared to the available experimental results, 47,50,56,[65][66][67][68] , activation entropy (s act ), activation Gibbs free energy (g act ), and activation volume (t act ), in the framework of the cBX model for diffusion in Ge. 21,29,30,[60][61][62][63][64] The results derived from the cBX model are compared to the available experimental results. 47,50,56,[65][66][67][68] of all the parameters needed to model diffusion properties of the most technologically important dopants and impurities in Ge.…”
Section: Dopant Diffusionmentioning
confidence: 99%
See 1 more Smart Citation
“…[60][61][62][63][64] The results, which are summarized in Table I and compared to the available experimental results, 47,50,56,[65][66][67][68] , activation entropy (s act ), activation Gibbs free energy (g act ), and activation volume (t act ), in the framework of the cBX model for diffusion in Ge. 21,29,30,[60][61][62][63][64] The results derived from the cBX model are compared to the available experimental results. 47,50,56,[65][66][67][68] of all the parameters needed to model diffusion properties of the most technologically important dopants and impurities in Ge.…”
Section: Dopant Diffusionmentioning
confidence: 99%
“…For Ge and GaAs, recent comprehensive studies using the cBX thermodynamic model have described defect processes including diffusion for most technologically important dopants. 29,30,[60][61][62][63][64]85 For Ge, the pressure dependence of selfdiffusion has been considered; however, future studies could investigate the pressure dependence of dopant diffusion. Although most of the issues concerning the cBX model in GaAs have been addressed for the most important dopants and impurities by Saltas et al, 85 there is still ground to study other technologically important III-V compounds, such as GaSb and InSb.…”
Section: B Conclusion and Future Directionsmentioning
confidence: 99%
“…Наличие дислокаций приводит к несоответствию параметров кристаллических решеток Ge и соединений А III В V , препятствуя росту высококачественных эпитаксиальных слоев на германиевой подложке [1][2][3]. Наряду с этим бездислокационный германий обеспечивает преимущества в быстродействии по сравнению с кремнием при создании радиационно стойких силовых MOSFET-транзисторов [7].…”
Section: Introductionunclassified
“…Известно, что формирование дислокационной структуры происходит в ходе выращивания кристаллов под действием внутренних макронапряжений. Наибольший вклад в возникновение напряжений в растущем кристалле вносят неоднородное температурное поле, вызывающее появление термоупругих напряжений, а также гетерогенные и гомогенные примесные неоднородности, определяющие остаточные напряжения [3][4][5][7][8][9][10][11][12].…”
Section: Introductionunclassified
“…Dislocation-free high-purity germanium helps to resolve issues pertaining to the use of silicon in the fabrication of radiation-resistant power MOSFET transistors, which are employed in power supply units, voltage converters, drive control units and other electronic devices in space equipment. The high carrier mobility in dislocation-free germanium, up tõ 3000 cm 2 /(V s), which is twice that in Si, allows it to be used with great success in the fabrication of spacegrade high-speed digital devices [6].…”
Section: Introductionmentioning
confidence: 99%