A number of binary oxides have been predicted to be thermodynamically stable in contact with Si and are candidates to replace SiO 2 in CMOS. However, reactions leading to the formation of interfacial silicide, silicate or SiO 2 layers have been reported when these oxides are exposed to high temperatures during device processing. Different pathways have been proposed in the literature to explain these reactions. In this paper, a thermodynamic analysis of the proposed reactions is performed. The analysis includes gaseous species, because typical gate dielectrics are ultra-thin layers and diffusivities for species from the surrounding atmosphere, such as oxygen, may be high. Furthermore, nonstoichiometry of the high-k oxide, as may be resulting from nonequilibrium deposition processes or reducing atmospheres during processing is also considered. Studies are proposed to distinguish between possible reaction mechanisms. Finally guidelines for stable interfaces are presented.3