The sensing ability of individual SnO(2) nanowires and nanobelts configured as gas sensors was measured before and after functionalization with Pd catalyst particles. In situ deposition of Pd in the same reaction chamber in which the sensing measurements were carried out ensured that the observed modification in behavior was due to the Pd functionalization rather than the variation in properties from one nanowire to another. Changes in the conductance in the early stages of metal deposition (i.e., before metal percolation) indicated that the Pd nanoparticles on the nanowire surface created Schottky barrier-type junctions resulting in the formation of electron depletion regions within the nanowire, constricting the effective conduction channel and reducing the conductance. Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion of the resultant atomic species to the oxide surface.
Atomic substitution in alloys can efficiently scatter phonons, thereby reducing the thermal conductivity in crystalline solids to the "alloy limit." Using In0.53Ga0.47As containing ErAs nanoparticles, we demonstrate thermal conductivity reduction by almost a factor of 2 below the alloy limit and a corresponding increase in the thermoelectric figure of merit by a factor of 2. A theoretical model suggests that while point defects in alloys efficiently scatter short-wavelength phonons, the ErAs nanoparticles provide an additional scattering mechanism for the mid-to-long-wavelength phonons.
The study of quantum phenomena in semiconductors requires epitaxial structures with exceptionally high charge-carrier mobilities. Furthermore, low-temperature mobilities are highly sensitive probes of the quality of epitaxial layers, because they are limited by impurity and defect scattering. Unlike many other complex oxides, electron-doped SrTiO(3) single crystals show high (approximately 10(4) cm(2) V(-1) s(-1)) electron mobilities at low temperatures. High-mobility, epitaxial heterostructures with SrTiO(3) have recently attracted attention for thermoelectric applications, field-induced superconductivity and two-dimensional (2D) interface conductivity. Epitaxial SrTiO(3) thin films are often deposited by energetic techniques, such as pulsed laser deposition. Electron mobilities in such films are lower than those of single crystals. In semiconductor physics, molecular beam epitaxy (MBE) is widely established as the deposition method that produces the highest mobility structures. It is a low-energetic, high-purity technique that allows for low defect densities and precise control over doping concentrations and location. Here, we demonstrate controlled doping of epitaxial SrTiO(3) layers grown by MBE. Electron mobilities in these films exceed those of single crystals. At low temperatures, the films show Shubnikov-de Haas oscillations. These high-mobility SrTiO(3) films allow for the study of the intrinsic physics of SrTiO(3) and can serve as building blocks for high-mobility oxide heterostructures.
Methods to extract trap densities at high-permittivity ͑k͒ dielectric/III-V semiconductor interfaces and their distribution in the semiconductor band gap are compared. The conductance method, the Berglund intergral, the Castagné-Vapaille ͑high-low frequency͒, and Terman methods are applied to admittance measurements from metal oxide semiconductor capacitors ͑MOSCAPs͒ with high-k / In 0.53 Ga 0.47 As interfaces with different interface trap densities. The results are discussed in the context of the specifics of the In 0.53 Ga 0.47 As band structure. The influence of different conduction band approximations for determining the ideal capacitance-voltage ͑CV͒ characteristics and those of the MOSCAP parameters on the extracted interface trap density are investigated. The origins of discrepancies in the interface trap densities determined from the different methods are discussed. Commonly observed features in the CV characteristics of high-k / In 0.53 Ga 0.47 As interfaces are interpreted and guidelines are developed to obtain reliable estimates for interface trap densities and the degree of Fermi level ͑un͒pinning for high-k / In 0.53 Ga 0.47 As interfaces.
Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at each GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution and the influence of different electrostatic boundary conditions are obtained.Comment: The article has been accepted by Applied Physics Letters. After it is published, it will be found at http://apl.aip.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.