Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at each GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution and the influence of different electrostatic boundary conditions are obtained.Comment: The article has been accepted by Applied Physics Letters. After it is published, it will be found at http://apl.aip.org
Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials. Recent work has demonstrated that focused ion beam and layer-by-layer electron-beam lithography can be used to pattern the necessary nanoscale features over small areas (hundreds of µm(2)) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for 'inking' it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm(2)) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit.
High-mobility perovskite BaSnO3 films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnOx. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO3. We demonstrate room temperature electron mobilities of 150 cm2 V−1 s−1 in films grown on PrScO3. The results open up a wide range of opportunities for future electronic devices.
The temperature dependent Hall mobility data from La-doped SrTiO 3 thin films has been analyzed and modeled considering various electron scattering mechanisms. We find that a ~6 meV transverse optical phonon (TO) deformation potential scattering mechanism is necessary to explain the dependence of transport on temperature between 10-200 K. Also, we find that the low temperature electron mobility in intrinsic (nominally undoped) SrTiO 3 is limited by acoustic phonon scattering. Adding the above two scattering mechanisms to longitudinal optical phonon (LO) and ionized impurity scattering mechanisms, excellent quantitative agreement between mobility measurement and model is achieved in the whole temperature range (2-300K) and carrier concentrations ranging over a few orders of magnitude (8x10 17 cm -3 -2x10 20 cm -3 ).Understanding the carrier scattering mechanisms in any material paves the way for improvement in its transport properties, unraveling of new physics, and eventual applications.A good case in point is the semiconductor GaAs: improvements in the mobility of this material led to the discovery of the fractional quantum Hall-effect, and in ultrafast high electron mobility transistors (HEMTs) that enables high-speed microwave communications [1,2].Strontium titanate, SrTiO 3 , is a perovskite transition metal oxide. It has been studied extensively for the many interesting phenomena it exhibits, such as quantum paraelectricity, structural phase transition, superconductivity etc. [3][4][5]. The discovery of a two dimensional electron gas at the heterointerface of SrTiO 3 and other oxides has opened up a whole new area of heterostructure oxide electronics [6][7][8]. A major obstacle in developing devices using SrTiO 3 is the low electron mobility in this material, and a lack of complete understanding of the major active electron scattering mechanisms.
The thermoelectric properties at temperatures between 10 K and 300 K of La-doped SrTiO3 thin films grown by hybrid molecular beam epitaxy (MBE) on undoped SrTiO3 substrates are reported. Below 50 K, the Seebeck coefficients exhibit very large magnitudes due to the influence of phonon drag. Combined with high carrier mobilities, exceeding 50 000 cm2 V−1 s−1 at 2 K for the films with the lowest carrier densities, this leads to thermoelectric power factors as high as 470 μWcm−1 K−2. The results are compared with other promising low temperature thermoelectric materials and discussed in the context of coupling with phonons in the undoped substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.