The electrochemical oxidation of diluted cyanide aqueous wastes has been studied in a single compartment electrochemical flow cell. It has been determined that the anode material influences greatly the process's performance. Boron doped diamond and PbO 2 anodes can oxidize these wastes in the presence of both sulfate or chloride anions. On the contrary, dimensional stable anodes cannot oxidize cyanide in sulfate-containing wastewaters, and require the presence of chloride ions. The oxidation of cyanides leads to the formation of cyanate in a first step, and later to the formation of carbon dioxide and nitrogen. There is a net consumption of hydroxyl ions during the process. Energy consumptions in the range 20-70 kWh m −3 are required to decrease the initial pollutant load by 70-80%. Global current efficiencies in the range 3-8% are obtained. These low current efficiencies are justified by the low cyanide concentrations that the wastes used in this work contain.