Many different types of purinergic receptors are present in the HypothalamicNeurohypophysial System (HNS), which synthesizes and releases vasopressin and oxytocin. The specific location of purinergic receptor subtypes has important functional repercussions for neuronal activity and synaptic output. Yet, until the advent of receptor KOs, this had been hindered by the low selectivity of the available pharmacological tools. The HNS offers an excellent opportunity to differentiate the functional properties of these purinergic receptors in cell bodies vs. terminals of the same physiological system. P2X2, P2X3, P2X4 and P2X7 receptors are present in vasopressin terminals
Accepted ArticleThis article is protected by copyright. All rights reserved.while oxytocin terminals exclusively express the P2X7 subtype. The latter is not functional in the cell bodies of the HNS. These purinergic receptor subtypes are permeable to sodium vs. calcium in varying amounts and this could play an important role in the release of vasopressin vs. oxytocin during bursting activity. Endogenous ATP and its metabolite, adenosine, have autocrine and paracrine modulatory effects on the release of these neuropeptides during physiological stimulation. Finally, we hypothesize that during such action potential bursts, ATP potentiates the release of vasopressin but not of oxytocin, and that adenosine, via A1 receptors, inhibits the release of both neuropeptides.