Error-related potentials (ErrPs) have provided technical support for the brain-computer interface. However, different visual stimulations may affect the ErrPs, and furthermore, affect the error recognition based on ErrPs. Therefore, the study aimed to investigate how people respond to different visual stimulations (static and dynamic) and find the best time window for different stimulation. Nineteen participants were recruited in the ErrPs-based tasks with static and dynamic visual stimulations. Five ErrPs were statistically compared, and the classification accuracies were obtained through linear discriminant analysis (LDA) with nine different time windows. The results showed that the P3, N6, and P8 with correctness were significantly different from those with error in both stimulations, while N1 only existed in static. The differences between dynamic and static errors existed in N1 and P2. The highest accuracy was obtained in the time window related to N1, P3, N6, and P8 for the static condition, and in the time window related to P3, N6, and P8 for the dynamic. In conclusion, the early components of ErrPs may be affected by stimulation modes, and the late components are more sensitive to errors. The error recognition with static stimulation requires information from the entire epoch, while the late windows should be focused more within the dynamic case.