2008
DOI: 10.1007/s10751-008-9696-7
|View full text |Cite
|
Sign up to set email alerts
|

PAC research in biology

Abstract: In this paper possible applications of the Perturbed Angular Correlations (PAC) technique in Biology are considered. Previous PAC experiments in biology are globally analyzed. All the work that appears in the literature has been grouped in a few research lines, just to make the analysis and discussion easy. The commonly used radioactive probes are listed and the experimental difficulties are analyzed. We also report applications of 181 Hf and 111 In isotopes in life sciences other than their use in PAC. The po… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2011
2011
2014
2014

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 23 publications
0
2
0
Order By: Relevance
“…Different experimental techniques, such as Nuclear Quadrupole Resonance (NQR), Nuclear Magnetic Resonance (NMR), Mössbauer Spectroscopy (MS), and Time-Differential c-c Perturbed-Angular-Correlation (PAC) spectroscopy, can be employed to study local electronic and structural properties at suitable probe-atom sites [22][23][24]. In particular, PAC has been extensively applied to study doped materials from the point of view of solid-state physics, chemistry, and biology in order to elucidate the subnanoscopic environment(s) of constituent or impurity atoms in solids, and the nature of chemical bonding in different kind of molecules and compounds [4,5,[25][26][27][28][29][30][31][32][33][34].…”
Section: Introductionmentioning
confidence: 99%
“…Different experimental techniques, such as Nuclear Quadrupole Resonance (NQR), Nuclear Magnetic Resonance (NMR), Mössbauer Spectroscopy (MS), and Time-Differential c-c Perturbed-Angular-Correlation (PAC) spectroscopy, can be employed to study local electronic and structural properties at suitable probe-atom sites [22][23][24]. In particular, PAC has been extensively applied to study doped materials from the point of view of solid-state physics, chemistry, and biology in order to elucidate the subnanoscopic environment(s) of constituent or impurity atoms in solids, and the nature of chemical bonding in different kind of molecules and compounds [4,5,[25][26][27][28][29][30][31][32][33][34].…”
Section: Introductionmentioning
confidence: 99%
“…Biophysics studies using the PAC technique with the probe nuclei 199m Hg (43 min) and 111m Cd (48 min) generally aim to identify the binding sites, ligands, and dynamic interactions of probe atoms attached to large biomolecules under specific conditions such as temperature, ambient solution, pH, etc, as partially reviewed by Hemmingsen [84] and Chain [ 85]. For that purpose, the radioisotopes are implanted in ice held at liquid nitrogen temperature so that, after removing the beam catcher from the vacuum chamber, the radioactive probes are directly available for biochemical processing in aqueous solution using a small chemistry lab located on-site.…”
Section: Emission Channelingmentioning
confidence: 99%