Using molecular dynamics simulations, we demonstrate that the efficiency of heat exchange between a solid and a gas can be maximized by functionalizing solid surface with organic self-assembled monolayers (SAMs). We observe that for bare metal surfaces, the thermal accommodation coefficient (TAC) strongly depends on the solid-gas interaction strength. For metal surfaces modified with organic SAMs, the TAC is close to its theoretical maximum and is essentially independent from the SAM-gas interaction strength. The analysis of the simulation results indicates that softer and lighter SAMs, compared to the bare metal surfaces, are responsible for the greatly enhanced TAC.