Using the time-dependent density matrix renormalization-group method and exact diagonalization, we study the nonequilibrium dynamics of the one-dimensional Fermi-Hubbard model following a quantum quench or a ramp of the on-site interaction strength. We are particularly interested in the nonequilibrium evolution of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations, which, at finite spin polarizations and for attractive interactions, are the dominant two-body correlations in the ground state. For quenches from the noninteracting to the attractive regime, we investigate the dynamical emergence of FFLO correlations and their signatures in the pair quasi-momentum distribution function. We observe that the postquench double occupancy exhibits a maximum as the interaction strength becomes of the order of the bandwidth. Finally, we study quenches and ramps from attractive to repulsive interactions, which imprint FFLO correlations onto repulsively bound pairs. We show that a quite short ramp time is sufficient to wipe out the characteristic FFLO features in the postquench pair momentum distribution functions.