The importance and economic interest of rocksalt as well as its influence on tectonics and applicative purposes such as mining, hydrocarbons extraction, and nuclear waste storage are well known. Careful characterization of physical and chemical properties of rocksalt is fundamental as the rocksalt behavior may influence its potential use for applicative purposes. Mechanical and rheological properties of rocksalt have been extensively studied in the past. However, the role of natural heterogeneities within rocksalt and their effect on salt rheology have not been investigated quantitatively. Here we present a comprehensive salt facies study on Messinian rocksalt from several Italian sites (Volterra Basin, Tuscany, Caltanissetta Basin, Sicily and Crotone Basin, Calabria). Four salt facies end members have been identified and analyzed by optical analyses. The main facies-defining characteristics resulted to be the primary salt crystal abundance, crystal size, roundness and orientation, as well as the clay inclusion contents. Three out of four facies were placed on an evolutionary path from an "immature," with respect to the deformation history, to a "mature," rocksalt. So we observed, with increasing rocksalt maturity, a progressive disappearing of primary crystal remnants, increasing crystals elongation and iso-orientation and decreasing in crystal size. This trend has been confirmed by differential stress calculation from subgrain size. Through seismic waves velocity measurements and uniaxial compressive runs, specific salt facies were tested. Results of the investigations demonstrate that the facies parameters have a distinct influence on the rocksalt petrophysical parameters like P-and S-waves velocity, dynamic and static Young Modulus, elastic limit, and strain at peak. Finally, this study allowed to suggest the subdivision of Volterra's salt sequence in three different units that have been subjected to variable deformation degree in response to the different salt characteristics.