Microarchitectural code analyzers, i.e., tools that estimate the throughput of machine code basic blocks, are important utensils in the tool belt of performance engineers. Recent tools like llvm-mca, uiCA, and Ithemal use a variety of techniques and different models for their throughput predictions. When put to the test, it is common to see these state-of-the-art tools give very different results. These inconsistencies are either errors, or they point to different and rarely documented assumptions made by the tool designers.In this paper, we present AnICA, a tool taking inspiration from differential testing and abstract interpretation to systematically analyze inconsistencies among these code analyzers. Our evaluation shows that AnICA can summarize thousands of inconsistencies in a few dozen descriptions that directly lead to high-level insights into the different behavior of the tools. In several case studies, we further demonstrate how AnICA automatically finds and characterizes known and unknown bugs in llvm-mca, as well as a quirk in AMD's Zen microarchitectures.CCS Concepts: • Software and its engineering → Correctness; Software verification and validation; Software testing and debugging; • Theory of computation → Abstraction.