Simultaneous neprilysin inhibition (NEPi) and angiotensin receptor blockade (ARB) with sacubitril/valsartan improves cardiac function and exercise tolerance in patients with heart failure. However, it is not known whether these therapeutic benefits are primarily due to NEPi with sacubitril or ARB with valsartan or their combination. Therefore, the aim of the present study was to investigate the potential contribution of sacubitril and valsartan to the benefits of the combination therapy on left ventricular (LV) function and exercise tolerance. Heart failure was induced by volume overload via partial disruption of the aortic valve in rats. Therapy began 4 wk after valve disruption and lasted through 8 wk. Drugs were administered daily via oral gavage [sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), and sacubitril (31 mg/kg)]. Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. Therapy with sacubitril/valsartan improved load-dependent indexes of LV contractility (dP/d tmax) and relaxation (dP/d tmin), exercise tolerance, and mitigated myocardial fibrosis, whereas monotherapies with valsartan, or sacubitril did not. Both sacubitril/valsartan and valsartan similarly improved a load-independent index of contractility [slope of the end-systolic pressure-volume relationship ( Ees)]. Sacubitril did not improve Ees. First, synergy of NEPi with sacubitril and ARB with valsartan leads to the improvement of load-dependent LV contractility and relaxation, exercise tolerance, and reduction of myocardial collagen content. Second, the improvement in load-independent LV contractility with sacubitril/valsartan appears to be solely due to ARB with valsartan constituent. NEW & NOTEWORTHY Our data suggest the following explanation for the effects of sacubitril/valsartan: 1) synergy of sacubitril and valsartan leads to the improvement of load-dependent left ventricular contractility and relaxation, exercise tolerance, and reduction of myocardial fibrosis and 2) improvement in load-independent left ventricular contractility is solely due to the valsartan constituent. The findings offer a better understanding of the outcomes observed in clinical studies and might facilitate the continuing development of the next generations of angiotensin receptor neprilysin inhibitors.