Inositol phospholipids have been implicated in almost all aspects of cellular physiology including spatiotemporal regulation of cellular signaling, acquisition of cellular polarity, specification of membrane identity, cytoskeletal dynamics, and regulation of cellular adhesion, motility, and cytokinesis. In this review, we examine the critical role phosphoinositides play in these processes to execute the establishment and maintenance of cellular architecture. Epithelial tissues perform essential barrier and transport functions in almost all major organs. Key to their development and function is the establishment of epithelial cell polarity. We place a special emphasis on highlighting recent studies demonstrating phosphoinositide regulation of epithelial cell polarity and how individual cells use phosphoinositides to further organize into epithelial tissues.P hosphoinositides (PIs) are essential components of cellular membranes in eukaryotes. Though these specialized lipids comprise less than 1% of the cellular lipid cohort, they play key roles in many fundamental biological processes (Di Paolo and De Camilli 2006;Saarikangas et al. 2010). PIs possess such far ranging roles by serving as specialized membrane docking sites for effectors of numerous cellular signal transduction cascades. PIs also serve as precursors of lipid second messengers. They are concentrated on the cytosolic face of cellular membranes (Fig. 1A) and rapidly diffuse within the plane of the membrane. Reversible phosphorylation of the myo-inositol head group of phosphatidylinositol (PtdIns) at positions 3, 4, and 5 (Fig. 1B) gives rise to the seven PI isoforms identified in eukaryotic cells. PtdIns(4)P and PtdIns(4,5)P 2 are constitutively present in membranes and comprise the largest pool of cellular PIs, whereas PtdIns(3,4,5)P 3 is essentially undetectable in most types of unstimulated cells (Lemmon and Ferguson 2000;Saarikangas et al. 2010).The spatiotemporally regulated production and turnover of phosphoinositides is crucial for localized PI signaling and function. Numerous phosphatidylinositol kinases and phosphatases are involved in regulating the metabolism of the various PI isoforms (Fig. 1)