There has been greatly increasing interest in orthogonal frequency division multiplexing (OFDM) for broadband wireless transmission due to its robustness against multipath fading. However, OFDM signals have high peak-toaverage power ratio (PAPR), and thus, a power amplifier must be operated with a large input power backoff (IBO). Recently, OFDM combined with time division multiplexing (OFDM/TDM) using minimum mean square errorfrequency domain equalization (MMSE-FDE) has been presented to reduce the PAPR, while improving the bit error rate (BER) performance of conventional OFDM. In this article, by extensive computer simulation, we present a comprehensive performance comparison of OFDM-based schemes in a nonlinear and frequency-selective fading channel. We discuss about the transmission performance of OFDM-based schemes with respect to the transmit peak-power, the achievable capacity, the BER performance, and the signal bandwidth. Our results show that OFDM/TDM using MMSE-FDE achieves a lower peak-power and capacity than conventional OFDM, which means significant reduction of amplifier transmit-power backoff, but with a slight decrease in signal bandwidth occupancy.