Computations over the rational numbers often suffer from intermediate coefficient swell. One solution to this problem is to apply the given algorithm modulo a number of primes and then lift the modular results to the rationals. This method is guaranteed to work if we use a sufficiently large set of good primes. In many applications, however, there is no efficient way of excluding bad primes. In this note, we describe a technique for rational reconstruction which will nevertheless return the correct result, provided the number of good primes in the selected set of primes is large enough. We give a number of illustrating examples which are implemented using the computer algebra system SINGULAR and the programming language JULIA. We discuss applications of our technique in computational algebraic geometry.