2019
DOI: 10.1553/giscience2019_01_s69
|View full text |Cite
|
Sign up to set email alerts
|

Parallel and Distributed Computing for large raster-based Spatial Multicriteria Decision Analysis Problems: A Computational Performance Comparison

Abstract: This article focuses on a cluster-based parallel and distributed approach for large raster datasets in the context of Spatial Multicriteria Decision Analysis (S-MCDA). The research addresses a land-prioritization model with respect to conservation practices. The reliability of the model results is examined using a variance-based Spatially-Explicit Uncertainty and Sensitivity (SEUSA) framework. The original case study area to which we applied the model was located in southwest Michigan, USA, and incorporated mi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance