This article focuses on a cluster-based parallel and distributed approach for large raster datasets in the context of Spatial Multicriteria Decision Analysis (S-MCDA). The research addresses a land-prioritization model with respect to conservation practices. The reliability of the model results is examined using a variance-based Spatially-Explicit Uncertainty and Sensitivity (SEUSA) framework. The original case study area to which we applied the model was located in southwest Michigan, USA, and incorporated millions of mapping units (pixels). As part of the model sensitivity analysis, several thousand intermediate raster datasets representing suitability surfaces are generated by means of a Monte Carlo Simulation (MCS). The creation of the suitability surfaces represents the most timeconsuming and memory-intensive step within the SEUSA framework. Sequential computational approaches to implementing SEUSA often have to accept a compromise with respect to problem size and the number of simulations, resulting in the low quality of the model sensitivity measures. This article presents the concept and implementation of a distributed and parallel solution based on the Python-Dask framework in order to improve the quality of SEUSA results for computationally-intensive spatial models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.