2020
DOI: 10.1007/978-981-15-6014-9_53
|View full text |Cite
|
Sign up to set email alerts
|

Parallel Ants Colony Optimization Algorithm for Dimensionality Reduction of Scientific Documents

Abstract: Dimensionality reduction is crucial in Machine Learning, to obtain main characteristics. The method of selecting characteristics that we will use is a multivariate filter, where we will jointly evaluate the relevance between the characteristics; using unsupervised learning. For which we will use information from Institute of Education Sciences, and application of TF-IDF to obtain the weights of each word in each document. To perform the dimensionality reduction, the PUFSACO (Parallelization Unsupervised future… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?