2016
DOI: 10.1109/tie.2016.2592866
|View full text |Cite
|
Sign up to set email alerts
|

Parallel Computation of Wrench Model for Commutated Magnetically Levitated Planar Actuator

Abstract: An accurate wrench model is significant for the simulation, manufacture, and control of the commutated magnetically levitated planar actuator (CMLPA). With plenty of coils and permanent magnets employed in the coil set and magnet array of CMLPA, the computational burden of the corresponding wrench model can be substantial. This paper proposes an accurate, universal, and robust parallel massive-thread wrench model (PMWM) for the CMLPA. In PMWM, the magnetic node, Gaussian quadrature, and coordinate transformati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
10
0
1

Year Published

2017
2017
2020
2020

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 17 publications
(11 citation statements)
references
References 44 publications
0
10
0
1
Order By: Relevance
“…9. As given in [9], [13], the purpose of the decoupling unit in this system is to solve the exciting current for the coils at each control cycle when the maglev system works. In the implementation, after the desired net force and torque are calculated by the control algorithm, the current values are obtained due to the matrix operation, which is based on the pseudo-inverse matrix of the current-wrench transformation matrix.…”
Section: Motion Controlmentioning
confidence: 99%
See 1 more Smart Citation
“…9. As given in [9], [13], the purpose of the decoupling unit in this system is to solve the exciting current for the coils at each control cycle when the maglev system works. In the implementation, after the desired net force and torque are calculated by the control algorithm, the current values are obtained due to the matrix operation, which is based on the pseudo-inverse matrix of the current-wrench transformation matrix.…”
Section: Motion Controlmentioning
confidence: 99%
“…In the past few decades, magnetically levitated tables with different topology structures [9], [10] have been proposed. In [10], [11], the maglev positioning tables are developed based on several Lorentz force actuators.…”
Section: Introductionmentioning
confidence: 99%
“…Nevertheless, the special ratio bring a certain restriction to design. De Boeij et al [7], Berkelman and Dzadovsky [24], Miyasaka and Berkelman [25] used the lookup table method and Xu et al [26] utilised the parallel computation to conduct the modelling of the IPMPM including end effect. Compared with the earlier discussed models with analytical expression, these methods have relative lower modelling efficiency which is inconvenient for the analysis and optimisation of the IPMPM.…”
Section: Introductionmentioning
confidence: 99%
“…Entre las plataformas paralelas existentes destaca la Arquitectura Unificada de Dispositivos de Cómputo (CUDA) (Saxena, Sharma and Sharma, 2014), (Vokorokos et al, 2014), la cual permite acelerar aplicaciones de cómputo, aprovechando el poder de las GPU´s (NVIDIA, no date). Recientemente se ha incrementado el uso de la plataforma CUDA (Pawar, 2017), Sin embargo, solo se detallan revisiones del estado del arte llevadas a cabo para acelerar la velocidad de procesamiento digital de imágenes (PDI) en ciertas aplicaciones como la médica (Weinlich et al, 2013) (Jiansen Li et al, 2014) (Lee et al, 2013) y no cubre las diferentes aplicaciones de procesamiento de video utilizando GPU en video vigilancia (Jha and Trivedi, 2013), (Devani, Nikam and Meshram, 2015), (Deligiannidis and Arabnia, 2014), procesamiento de imágenes de Radar de Apertura Sintética (SAR) (Fatica and Phillips, 2014), mejora de súper resolución de imágenes (Feng, Zhang and Gao, 2015), reconocimiento de objetos utilizando descriptor de Fourier (Haythem et al, 2014), criptografía, seguimiento de objetos, reducción de ruido (Yazdanpanah et al, 2014), reconstrucción de imágenes (Zhu et al, 2013) (Kau and Chen, 2013) (Heidari, 2013), detección de rostros (Sun et al, 2013), modelos de actuadores planares (Xu, Dinavahi and Xu, 2016), etc.…”
Section: Introductionunclassified