Abstract. Recent papers have reported on successful application of constraint solving techniques to off-line real-time scheduling problems, with realistic size and complexity. Success allegedly came for two reasons: major recent advances in solvers efficiency and use of optimized, problemspecific constraint representations. Our current objective is to assess further the range of applicability and the scalability of such constraint solving techniques based on a more general and agnostic evaluation campaign. For this, we have considered a large number of synthetic scheduling problems and a few real-life ones, and attempted to solve them using 3 state-of-the-art solvers, namely CPLEX, Yices2, and MiniZinc/G12. Our findings were that, for all problems considered, constraint solving does scale to a certain limit, then diverges rapidly. This limit greatly depends on the specificity of the scheduling problem type. All experimental data (synthetic task systems, SMT/ILP models) are provided so as to allow experimental reproducibility.