1998
DOI: 10.1016/s0304-3975(97)00073-x
|View full text |Cite
|
Sign up to set email alerts
|

Parallel transient time of one-dimensional sand pile

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
20
0
1

Year Published

2002
2002
2022
2022

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(21 citation statements)
references
References 4 publications
0
20
0
1
Order By: Relevance
“…The evolution starts from the initial configuration h where h 0 " N and h i " 0 for i ą 0, and in the classical sandpile model a grain falls from column i to column i`1 if and only if the height difference h i´hi`1 ą 1. One-dimensional sandpile models were well studied in recent years [11,4,12,5,25,22,6]. Kadanoff et al proposed a generalization of classical models in which a fixed parameter p denotes the number of grains falling at each step [17].…”
Section: Kadanoff Sandpile Model (Kspm)mentioning
confidence: 99%
“…The evolution starts from the initial configuration h where h 0 " N and h i " 0 for i ą 0, and in the classical sandpile model a grain falls from column i to column i`1 if and only if the height difference h i´hi`1 ą 1. One-dimensional sandpile models were well studied in recent years [11,4,12,5,25,22,6]. Kadanoff et al proposed a generalization of classical models in which a fixed parameter p denotes the number of grains falling at each step [17].…”
Section: Kadanoff Sandpile Model (Kspm)mentioning
confidence: 99%
“…We first prove it restricting ourselves on words of L Given a finite word v on L, we define the maximal height g(v) = max{|h(v ′ )| |v ′ prefix of v}. The previous lemma gives the result g(t(v)) ≤ 1 + g(v) 4 . We can now use a trick to get the expected result.…”
mentioning
confidence: 99%
“…Ces grains se déplacent entre les cases du tableau selon des règles d'évolution comme celles décrites par les Figures 1 et 2. Une attention particulière aété portée aux configurations obtenues en partant d'une unique colonne contenant un nombre fini de grains [8,9,11,6,17,26,27,13,14,10,7,16], amenant des développements mathématiques intéressants pour eux-même, et motivés par troiséléments :…”
Section: Introductionunclassified