Many tractable algorithms for solving the Constraint Satisfaction Problem
(CSP) have been developed using the notion of the treewidth of some graph
derived from the input CSP instance. In particular, the incidence graph of the
CSP instance is one such graph. We introduce the notion of an incidence graph
for modal logic formulae in a certain normal form. We investigate the
parameterized complexity of modal satisfiability with the modal depth of the
formula and the treewidth of the incidence graph as parameters. For various
combinations of Euclidean, reflexive, symmetric and transitive models, we show
either that modal satisfiability is FPT, or that it is W[1]-hard. In
particular, modal satisfiability in general models is FPT, while it is
W[1]-hard in transitive models. As might be expected, modal satisfiability in
transitive and Euclidean models is FPT.Comment: Full version of the paper appearing in MFCS 2010. Change from v1:
improved section 5 to avoid exponential blow-up in formula siz