In this contribution, we evaluate the performance of an additively fabricated piezoelectric poly(vinylidenefluoride-cotrifluoroethylene) (P(VDF-TrFE)) based dynamic pressure sensor in non-invasive arterial pulse wave (PW) measurement. Additively fabricated piezoelectric sensors have high potential for the realization of affordable and unobtrusive PW measurement systems which could enable the long-term monitoring of patients with cardiovascular diseases (CVDs). However, the accuracy and reliability of such sensors have not been extensively studied before. We propose an additive fabrication process for a P(VDF-TrFE) PW-sensor, measure PW from the radial artery at the wrist from 22 healthy volunteer subjects, calculate clinically relevant parameters based on the PW waveform and compare their values to the values obtained from concurrent measurement with an electromechanical film (EMFi) based reference sensor, used earlier in several clinical studies. We show that the signals recorded with the two sensors, as well as the radial augmentation index (rAIx) and the stiffness index (SI) calculated from them, are in good agreement with each other. These results demonstrate that the additively fabricated P(VDF-TrFE) PW sensors can reach a suitable level of accuracy and reliability for clinical use.Index Terms-Printed electronics, pulse wave measurement, radial artery, piezoelectric dynamic pressure sensor, P(VDF-TrFE), electret material, EMFi Korkeakoulunkatu 3, 33720, Tampere, Finland. M.-M. Laurila is the