2022
DOI: 10.1007/s10844-022-00762-0
|View full text |Cite
|
Sign up to set email alerts
|

Parameters tuning of multi-model database based on deep reinforcement learning

Abstract: As we all know, the performance of database management system is directly linked to a vast array of knobs, which control various aspects of system operation, ranging from memory and thread counts settings to I/O optimization. Improper settings of configuration parameters are shown to have detrimental effects on performance, reliability and availability of the overall database management system. This is also true for multi-model databases, which use a single platform to support multiple data models. Existing ap… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 32 publications
0
2
0
1
Order By: Relevance
“…Ao aplicar o mesmo critério para o texto completo, o número final obtido foi 3. [Holubová et al 2021, Vavrek et al 2019], migrac ¸ão de dados poliglotas [Niska 2024], inferência de esquemas , desenvolvimento de linguagens e interfaces de consulta [Bakhtin 2023, Koupil et al 2021] e benchmarks para avaliac ¸ão de performance em BDs multimodelo [Ye et al 2023].…”
Section: Revisão Sistemáticaunclassified
“…Ao aplicar o mesmo critério para o texto completo, o número final obtido foi 3. [Holubová et al 2021, Vavrek et al 2019], migrac ¸ão de dados poliglotas [Niska 2024], inferência de esquemas , desenvolvimento de linguagens e interfaces de consulta [Bakhtin 2023, Koupil et al 2021] e benchmarks para avaliac ¸ão de performance em BDs multimodelo [Ye et al 2023].…”
Section: Revisão Sistemáticaunclassified
“…Confgure multimodel database with C t (13) Perform workload q and observe new state s t+1 ⟵ cost(C t , q) and r t ⟵ reward(s t+1 ) (14) Push (s t , s t+1 , a t , r t ) into R (15) Sample a random mini-batch (s i , s i+1 , a i , r i ) from R (16) target…”
Section: Parameter Settingsmentioning
confidence: 99%
“…In our previous work [15], we proposed MMDTune, a parameter-tuning method for multimodel databases based on deep reinforcement learning. MMDTune has the problems of long training time and low computational efciency, which cannot be dynamically adjusted in the course of practical application.…”
Section: Introductionmentioning
confidence: 99%