a b s t r a c tIn practice, in many call centers customers often perform redials (i.e., reattempt after an abandonment) and reconnects (i.e., reattempt after an answered call). In the literature, call center models usually do not cover these features, while real data analysis and simulation results show ignoring them inevitably leads to inaccurate estimation of the total inbound volume. Therefore, in this paper we propose a performance model that includes both features. In our model, the total volume consists of three types of calls: (1) fresh calls (i.e., initial call attempts), (2) redials, and (3) reconnects. In practice, the total volume is used to make forecasts, while according to the simulation results, this could lead to high forecast errors, and subsequently wrong staffing decisions. However, most of the call center data sets do not have customer-identity information, which makes it difficult to identify how many calls are fresh and what fractions of the calls are redials and reconnects.Motivated by this, we propose a model to estimate the number of fresh calls, and the redial and reconnect probabilities, using real call center data that has no customer-identity information. We show that these three variables cannot be estimated simultaneously. However, it is empirically shown that if one variable is given, the other two variables can be estimated accurately with relatively small bias. We show that our estimations of redial and reconnect probabilities and the number of fresh calls are close to the real ones, both via real data analysis and simulation.