This study is an experimental study corresponding to an analytical study presented previously, where a scaled-down model was built and tested in a water tank by following the size and shape of the structure applied in the analytical study. In this study, a wave energy converter of an oscillating water column (OWC) system is integrated with the infrastructure of a jacket-type offshore platform applied to an offshore wind turbine system. The purpose is to conduct a combination system through the simultaneous utilization of both wind power and wave power so that sustainable energy can be maximized. During the analytical study’s analysis, the airflow response and the converting efficiency of wave energy from an OWC system integrated with an offshore template structural system were evaluated. By following the analytical study’s analysis, the performance of all the systems is tested, including the airflow velocity, pneumatic power, and the converting efficiency of the power from waves. The experimental data are analyzed and discussed in terms of the variations of the OWC system’s geometrical parameters. The parameters under consideration include the exhale orifice-area of airflow, gate-openings of inflow water, and the submerged chamber depth. It is found from the experimental results that, through the comparison between the experimental data and the analytical results, the results of the analytical study’s analysis are countable, and an open sea OWC system can be successfully applied to the template structure of offshore wind power infrastructure as a secondary generating system for the multi-purpose utilization of the structure.