Changes in temperature during reactor operation may cause changes in physical parameters, leading to core overheating and accidents. It is essential to analyze and assess the safety parameters of the core under different operating conditions. This paper investigates the effects of fuel temperature, moderator density, boron concentration, and control rod state on AP1000 safety parameters. The study uses RMC and NJOY to calculate the changes in reactivity factor, effective delayed neutron fraction, and neutron generation time of the AP1000 reactor under different operating conditions. The changes in reactivity coefficients, neutron fluxes, and relative power densities of AP1000 reactors are analyzed for normal and accidental operating conditions. The results indicated that the reactivity coefficient remained negative under accident conditions, which ensured the safe operation of the reactor. The delayed neutron fraction, neutron flux, and power density distributions are affected by fuel temperature, moderator density, and control rod position. The control rod worth was sufficient for the emergency shutdown of the reactor under accidental conditions. It is demonstrated that the operation of the AP1000 reactor under study conditions is safe and controllable.