2009
DOI: 10.1137/070704046
|View full text |Cite
|
Sign up to set email alerts
|

Pareto Subdifferential Calculus for Convex Vector Mappings and Applications to Vector Optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0

Year Published

2013
2013
2020
2020

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(19 citation statements)
references
References 16 publications
0
19
0
Order By: Relevance
“…(c) On the other hand, for the case = 0, -regular -subdifferentiability assumption (on H ) in Theorem 3.1 becomes useless for > 0, and the formulas (for ∈ p, w ) of this theorem then reduces, as corollary, to the composition rule for the efficient subdifferentials we established in [9] 3 :…”
Section: Downloaded By [Unam Ciudad Universitaria] At 18:57 20 Decembmentioning
confidence: 91%
See 3 more Smart Citations
“…(c) On the other hand, for the case = 0, -regular -subdifferentiability assumption (on H ) in Theorem 3.1 becomes useless for > 0, and the formulas (for ∈ p, w ) of this theorem then reduces, as corollary, to the composition rule for the efficient subdifferentials we established in [9] 3 :…”
Section: Downloaded By [Unam Ciudad Universitaria] At 18:57 20 Decembmentioning
confidence: 91%
“…As mentioned in our previous works [9,10], that unlike the strong concept ( = s) which is a like-scalar notion, in fact, with Pareto concepts, the subdifferential calculus rules cannot be homogeneous in a sense that only Pareto subdifferentials are involved. A counterexample in [10] for the sum rule, indeed, shows with very regular mappings (linear operators in two dimensions) that for = s and for all , 1 and 2 nonnegative vectors,…”
Section: Pareto -Subdifferential Composition Rulesmentioning
confidence: 95%
See 2 more Smart Citations
“…The usual exact strong subdifferential of f at x 0 ∈ dom f is denoted by ∂ s f (x 0 ), i.e., (see, for instance, [19]),…”
Section: Definition 27mentioning
confidence: 99%