Case-based reasoning uses old information to infer the answer of new problems. In case-based reasoning, a reasoner firstly records the previous cases, then searches the previous case list that is similar to the current one and uses that to solve the new case. Case-based reasoning means adapting old solving solutions to new situations. This paper proposes a reasoning system based on the case-based reasoning method. To begin, we show the theoretical structure and algorithm of from coarse to fine (FCTF) reasoning system, and then demonstrate that it is possible to successfully learn and reason new information. Finally, we use our system to predict practical weather conditions based on previous ones and experiments show that the prediction accuracy increases with further learning of the FCTF reasoning system.