This paper proposes to decompose the nonlinear dynamic of a chaotic system with Chebyshev polynomials to improve performances of its estimator. More widely than synchronization of chaotic systems, this algorithm is compared to other nonlinear stochastic estimator such as Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Chebyshev polynomials orthogonality properties is used to fit a polynomial to a nonlinear function. This polynomial is then used in an Exact Polynomial Kalman Filter (ExPKF) to run real time state estimation. The ExPKF offers mean square error optimality because it can estimate exact statistics of transformed variables through the polynomial function. Analytical expressions of those statistics are derived so as to lower ExPKF algorithm computation complexity and allow real time applications. Simulations under the Additive White Gaussian Noise (AWGN) hypothesis, show relevant performances of this algorithm compared to classical nonlinear estimators.