We assessed the chemical properties and oxidative stress of particulate matter (PM) emissions from underfired charbroiled meat operations with and without the use of aftertreatment control technologies. Cooking emissions concentrations showed a strong dependence on the control technology utilized, with all emission rates showing decreases with the control technologies compared to the baseline testing. The organic acids profile was dominated by the saturated nonanoic, myristic, palmitic, and stearic acids, and the unsaturated oleic, elaidic, and palmitoleic acids. Cholesterol was also found in relatively high concentrations. Lower and medium-weight polycyclic aromatic hydrocarbons (PAHs) were the dominant species for all cooking experiments. Heavier PAHs were also detected in high concentrations, especially in the particle-phase. For the nitrated PAH emissions (nitro-PAHs), low molecular weight compounds dominated the cooking emissions. Under the present experimental conditions, the heterocyclic aromatic amines (HAAs) showed very low concentrations, which suggests these species are rarely formed in meat cooking PM. The most efficient control technology for reducing the majority of the toxic pollutants was the electrostatic precipitator, which resulted in total emissions reductions on the order of 95%, 79%, 90%, 96%, 90%, and 94%, respectively, for particle-phase PAHs, gas-phase PAHs, particle-phase nitro-PAHs, gas-phase nitro-PAHs, particle-phase HAAs, and gas-phase HAAs compared to the baseline testing. Our experiment showed that cooking aerosol contained higher levels of prooxidants in the particle-phase and the corresponding vapors contained higher levels of electrophiles. Overall, the use of control technologies reduced the redox and electrophilic activities of cooking PM.