This paper considers passive detection of a cyclostationary signal in two multiple-input multiple-output (MIMO) channels. The passive detection system consists of an illuminator of opportunity (IO), a reference array, and a surveillance array, each equipped with multiple antennas. As common transmission signals of the IO are cyclostationary, our goal is to detect the presence of cyclostationarity at the surveillance array, given observations from both channels. To this end, we analyze the existence of optimal invariant tests, and we derive an alternative and more insightful expression for a previously proposed generalized likelihood ratio test (GLRT). Since we show that neither the uniformly most powerful invariant test (UMPIT) nor the locally most powerful invariant test (LMPIT) exist, we propose an LMPIT-inspired detector that is given by a function of the cyclic cross-power spectral density. We show that the LMPIT-inspired detector outperforms the GLRT, and both detectors outperform state-of-the-art techniques.