Abstract:Deep Neural Networks (DNNs) are robust against intra-class variability of images, pose variations and random noise, but vulnerable to imperceptible adversarial perturbations that are well-crafted precisely to mislead. While random noise even of relatively large magnitude can hardly aect predictions, adversarial perturbations of very small magnitude can make a classier fail completely.To enhance robustness, we introduce a new adversarial defense called patch replacement, which transforms both the input images a… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.