The rising field of integrative bioinformatics provides the vital methods to integrate, manage and also to analyze the diverse data and allows gaining new and deeper insights and a clear understanding of the intricate biological systems. The difficulty is not only to facilitate the study of heterogeneous data within the biological context, but it also more fundamental, how to represent and make the available knowledge accessible. Moreover, adding valuable information and functions that persuade the user to discover the interesting relations hidden within the data is, in itself, a great challenge. Also, the cumulative information can provide greater biological insight than is possible with individual information sources. Furthermore, the rapidly growing number of databases and data types poses the challenge of integrating the heterogeneous data types, especially in biology. This rapid increase in the volume and number of data resources drive for providing polymorphic views of the same data and often overlap in multiple resources.In this thesis a multi-pronged approach is proposed that deals with various methods for the analysis and representation of the diverse biological data which are present in different data sources. This is an effort to explain and emphasize on different concepts which are developed for the analysis of molecular data and also to explain its biological significance. The hypotheses proposed are in context with various other results and findings published in the past. The approach demonstrated also explains different ways to integrate the molecular data from various sources along with the need for a comprehensive understanding and clear projection of the concept or the algorithm and its results, but with simple means and methods. The multifarious approach proposed in this work comprises of different tools or methods spanning significant areas of bioinformatics research such as data integration, data visualization, biological network construction / reconstruction and alignment of biological pathways. Each tool deals with a unique approach to utilize the molecular data for different areas of biological research and is built based on the kernel of the thesis. Furthermore these methods are combined with graphical representation that make things simple and comprehensible and also helps to understand with ease the underlying biological complexity. Moreover the human eye is often used to and it is more comfortable with the visual representation of the facts.