Oxidation of the iron(II) precursor [(L1)FeIICl2], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (sPhIO) leads to the extremely reactive ferryl oxidant [(L1)(Cl)FeIV=O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non‐heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C−H abstraction and the result of a rebound of the ensuing radical to an iron‐bound Cl−. The time‐resolved formation of the halogenation product indicates that this primarily results from sPhIO oxidation of an initially formed oxido‐bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1)FeIICl2] indicate a high complex stability of the bispidine‐iron complexes. DFT analysis shows that, due to a large driving force and small triplet‐quintet gap, [(L1)(Cl)FeIV=O]+ is the most reactive small‐molecule halogenase model, that the FeIII/radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.