PurposeTo establish a streamlined end‐to‐end test of a 6 degrees‐of‐freedom (6DoF) robotic table using a 3D printed phantom for periodic quality assurance.MethodsA 3D printed phantom was fabricated with translational and rotational offsets and an imbedded central ball‐bearing (BB). The phantom underwent each step of the radiation therapy process: CT simulation in a straight orientation, plan generation using the treatment planning software, setup to offset marks at the linac, registration and corrected 6DoF table adjustments via hidden target test, delivery of a Winston‐Lutz test to the BB, and verification of table positioning via field and laser lights. The registration values, maximum total displacement of the combined Winston‐Lutz fields, and a pass or fail criterion of the laser and field lights were recorded. The quality assurance process for each of the three linacs were performed for the first 30 days.ResultsWithin a 95% confidence interval, the overall uncertainty values for both translation and rotation were below 1.0 mm and 0.5° for each linac respectively. When combining the registration values and other uncertainties for all three linacs, the average deviations were within 2.0 mm and 1.0° of the designed translation and rotation offsets of the 3D print respectively. For all three linacs, the maximum total deviation for the Winston‐Lutz test did not exceed 1.0 mm. Laser and light field verification was within tolerance every day for all three linacs given the latest guidance documentation for table repositioning.ConclusionThe 3D printer is capable of accurately fabricating a quality assurance phantom for 6DoF positioning verification. The end‐to‐end workflow allows for a more efficient test of the 6DoF mechanics while including other important tests needed for routine quality assurance.