The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification.Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms.The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods.A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use.
Purpose/objectives: Three-dimensional (3D) printing is recognized as an effective clinical and educational tool in procedurally intensive specialties. However, it has a nascent role in radiation oncology. The goal of this investigation is to clarify the extent to which 3D printing applications are currently being used in radiation oncology through a systematic review of the literature. Materials/methods: A search protocol was defined according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Included articles were evaluated using parameters of interest including: year and country of publication, experimental design, sample size for clinical studies, radiation oncology topic, reported outcomes, and implementation barriers or safety concerns. Results: One hundred and three publications from 2012 to 2019 met inclusion criteria. The most commonly described 3D printing applications included quality assurance phantoms (26%), brachytherapy applicators (20%), bolus (17%), preclinical animal irradiation (10%), compensators (7%), and immobilization devices (5%). Most studies were preclinical feasibility studies (63%), with few clinical investigations such as case reports or series (13%) or cohort studies (11%). The most common applications evaluated within clinical settings included brachytherapy applicators (44%) and bolus (28%). Sample sizes for clinical investigations were small (median 10, range 1-42). A minority of articles described basic or translational research (11%) and workflow or cost evaluation studies (3%). The number of articles increased over time (P < 0.0001). While outcomes were heterogeneous, most studies reported successful implementation of accurate and cost-effective 3D printing methods. Conclusions: Three-dimensional printing is rapidly growing in radiation oncology and has been implemented effectively in a diverse array of applications. Although the number of 3D printing publications has steadily risen, the majority of current reports are preclinical in nature and the few clinical studies that do exist report on small sample sizes. Further dissemination of ongoing investigations describing the clinical application of developed 3D printing technologies in larger cohorts is warranted.
3D printing technology has allowed the creation of custom applicators for high dose rate (HDR) brachytherapy, especially for complex anatomy. With conformal therapy comes the need for advanced dosimetric verification. It is important to demonstrate how dose to 3D printed materials can be related to dose to water. This study aimed to determine dose differences and uncertainties using 3D printed PLA and ABS plastics for Radiochromic film calibration in HDR brachytherapy.
Gafchromic EBT3 film pieces were irradiated in water with an Ir-192 source at calculated dose levels ranging from 0 to 800 cGy, to create the control calibration curve. Similarly, film was placed below 3D printed PLA and ABS blocks and irradiated at the same dose levels calculated for water, ranging from 0 to 800 cGy. After a 72-h development time, film pieces were scanned on a flatbed scanner and the median pixel value was recorded in the region of highest dose. This value was converted to net optical density (NOD). A rational function was used to fit a calibration curve in water that relates NOD to dose for red, green, and blue color channels. Based on this fitted curve, ABS and PLA NOD values were used to estimate dose in 3D printed plastics.
From the fitted calibration curve, mean residual error between measured and planned dose to water was less than 1% for each color channel at high dose levels. At high dose levels, ABS and PLA mean residual errors were about 6.9 and 7.8% in the red channel, while 5.2 and 5.7% in the green channel. Combined uncertainties measured to be about 6.9% at high dose levels. This study demonstrated dose differences and uncertainties using 3D printed applicators for HDR Ir-192 brachytherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.