Segmentation of the anode-side of a CdTe diode produces detectors with excellent spatial and energy resolution while maintaining an active area that extends to the detector edge. The CdTe pixel detectors reported have 250 ìm pitch, a detector thicknesses of 1 mm and are bonded to a spectroscopic readout ASIC. The results from an edgeless CdTe detector with indium-diffused anodes, produced via diamond blade segmentation, are compared to those of a CdTe Schottky pixel detector with aluminium anodes and guard band produced using standard photolithographic techniques. The energy resolution at 59.54 keV was measured to be 1.4% and 1.3% for the standard and edgeless detector respectively. The spectroscopic performance of pixels located at the detector edges are discussed with reference to TCAD simulations and X-ray micro-beam measurements.