The pupil is known to reflect a range of psychological and physiological variables, including cognitive effort, arousal, attention, and even learning. Within autism spectrum disorder (ASD), some work has used pupil physiology to successfully classify patients with or without autism. As we have come to understand the heterogeneity of ASD and other neurodevelopmental disorders, the relationship between quantitative traits and physiological markers has become increasingly more important, as this may lead us closer to the underlying biological basis for atypical responses and behaviors. We implemented a novel paradigm designed to capture patterns of pupil adaptation during sustained periods of dark and light conditions in a pediatric sample that varied in intellectual ability and clinical features. We also investigate the relationship between pupil metrics derived from this novel task and quantitative behavioral traits associated with the autism phenotype. We show that pupil metrics of constriction and dilation are distinct from baseline metrics. Pupil dilation metrics correlate with individual differences measured by the Social Responsiveness Scale (SRS), a quantitative measure of autism traits. These results suggest that using a novel, yet simple, paradigm can result in meaningful pupil metrics that correlate with individual differences in autism traits, as measured by the SRS.