The pupil is known to reflect a range of psychological and physiological variables, including cognitive effort, arousal, attention, and even learning. Within autism spectrum disorder (ASD), some work has used pupil physiology to successfully classify patients with or without autism. As we have come to understand the heterogeneity of ASD and other neurodevelopmental disorders, the relationship between quantitative traits and physiological markers has become increasingly more important, as this may lead us closer to the underlying biological basis for atypical responses and behaviors. We implemented a novel paradigm designed to capture patterns of pupil adaptation during sustained periods of dark and light conditions in a pediatric sample that varied in intellectual ability and clinical features. We also investigate the relationship between pupil metrics derived from this novel task and quantitative behavioral traits associated with the autism phenotype. We show that pupil metrics of constriction and dilation are distinct from baseline metrics. Pupil dilation metrics correlate with individual differences measured by the Social Responsiveness Scale (SRS), a quantitative measure of autism traits. These results suggest that using a novel, yet simple, paradigm can result in meaningful pupil metrics that correlate with individual differences in autism traits, as measured by the SRS.
Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of visual perceptual skills-3rd Edition (TVPS). In a large adult cohort (n = 209), TVPS-Figure Ground scores were positively correlated with autistic-like social features as assessed by the Broader autism phenotype questionnaire. This relationship was gender-specific, with males showing a correspondence between visual perceptual skills and autistic-like traits. This work supports the link between atypical visual perception and autism and highlights the importance in characterizing meaningful individual differences in clinically relevant behavioral phenotypes.
Prosaccade and antisaccade errors in the context of social and nonsocial stimuli were investigated in youth with autism spectrum disorder (ASD; n = 19) a matched control sample (n = 19), and a small sample of youth with obsessive compulsive disorder (n = 9). Groups did not differ in error rates in the prosaccade condition for any stimulus category. In the antisaccade condition, the ASD group demonstrated more errors than the control group for nonsocial stimuli related to circumscribed interests, but not for other nonsocial stimuli or for social stimuli. Additionally, antisaccade error rates were predictive of core ASD symptom severity. Results indicate that the cognitive control of visual attention in ASD is impaired specifically in the context of nonsocial stimuli related to circumscribed interests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.