Semiconducting lead sulfide (PbS) nanoparticles were cluster beam deposited into evaporated quaterthiophene (4T) organic films, which in some cases were additionally modified by simultaneous 50 eV acetylene ion bombardment. Surface chemistry of these nanocomposite films was first examined using standard x-ray photoelectron spectroscopy (XPS). XPS was also used to probe photoinduced shifts in peak binding energies upon illumination with a continuous wave green laser and the magnitudes of these peak shifts were interpreted as changes in relative photoconductivity. The four types of films examined all displayed photoconductivity: 4T only, 4T with acetylene ions, 4T with PbS nanoparticles, and 4T with both PbS nanoparticles and acetylene ions. Furthermore, the ion-modified films displayed higher photoconductivity, which was consistent with enhanced bonding within the 4T organic matrix and between 4T and PbS nanoparticles. PbS nanoparticles displayed higher photoconductivity than the 4T component, regardless of ion modification.