In this Letter, we report gate-tunable X-ray photoelectron emission from back-gated graphene transistors. The back-gated transistor geometry allows us to study photoemission from graphene layer and the dielectric substrate at various gate voltages. Application of gate voltage electrostatically dopes graphene and shifts the binding energy of photoelectrons in various ways depending on the origin and the generation mechanism(s) of the emitted electrons. The gate-induced shift of the Fermi energy of graphene alters the binding energy of the C 1s electrons, whereas the electric field of the gate electrodes shift the binding energy of core electrons emitted from the gate dielectric underneath the graphene layer. The gradual change of the local potential through depths of the gate dielectric provides quantitative electrical information about buried interfaces. Our results suggest that gate-tunable photoemission spectra with chemically specific information linked with local electrical properties opens new routes to elucidating operation of devices based especially on layered materials.
X-ray photoelectron spectroscopy is used to probe the photoinduced shifts in the binding energies of Si2p, O1s, and C1s of the SiO2/Si interfaces of a number of samples having oxide and/or thin organic layers on top of p- and n-Si wafers. Whereas the photoinduced shifts, in each and every peak related, vary from 0.2 to 0.5 eV for the p-type samples, the corresponding shifts are substantially smaller (<0.1 eV) for the n-type, regardless of (i) oxidation route (thermal or anodic), (ii) thickness of oxide layer, (iii) nature of organic layer, or (iv) color of three illuminating sources we have used. This leads us to conclude that these particular photoshifts reflect the charge state of the SiO2/Si interface, even in the case of a 20 nm thick oxide, where the interface is buried and cannot be probed directly by XPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.