2019
DOI: 10.18495/comengapp.v8i2.281
|View full text |Cite
|
Sign up to set email alerts
|

PCA-Based on Feature Extraction and Compressed Sensing for Dimensionality Reduction

Abstract: Compressive sensing reduces the number of samples required to achieve acceptable reconstruction for medical diagnostics, therefore this research will implement dimensional reduction algorithms through compressed sensing for electrocardiogram signals (EKG). dimensional reduction is performed based on the fact that ECG signals can be reconstructed with linear combination coefficients with a bumpy base of small measurements with high accuracy. This study will use PCA for feature extraction on ECG signals. The dat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 10 publications
0
0
0
Order By: Relevance