Abstract-The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR).The AGR will use helium coolant, a low-power-density graphitemoderated core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory's (INL's) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) online detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavilyshielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation in December 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the installation in the ATR basement, and the test monitoring plan.