Understanding the composition of atmospheric organic particulate matter (OPM) is essential for predicting its effects on climate, air quality, and health. However, the polar oxygenated fraction (PO-OPM), which includes a significant mass contribution from carboxylic acids, is difficult to speciate and quantitatively determine by current analytical methods such as gas chromatography-mass spectrometry (GC-MS). The method of chemical derivatization and two-dimensional GC with time of flight MS (GC×GC/TOF-MS) was examined in this study for its efficacy in: 1) quantifying a high percentage of the total organic carbon (TOC) mass of a sample containing PO-OPM; 2) quantitatively determining PO-OPM components including carboxylic acids at atmospherically relevant concentrations; and 3) tentatively identifying PO-OPM components. Two derivatization reagent systems were used in this study: BF 3 /butanol for the butylation of carboxylic acids, aldehydes, and acidic ketones, and BSTFA for the trimethylsilylation (TMS) of carboxylic acids and alcohols. Three α-pinene ozonolysis OPM filter samples and a set of background filter samples were collected by collaborators in a University of California, Riverside environmental chamber. Derivatization/GC×GC TOF-MS was used to tentatively identify some previously unidentified α-pinene ozonolysis products, and also to show the characteristics of all oxidation products determined. Derivatization efficiencies as measured were 40-70% for most butyl derivatives, and 50-58% for most trimethylsilyl derivatives. A thermal optical method was used to measure the TOC on each filter, and a value of the TABLE OF CONTENTS Abstract………………………………………………………………………………...i Acknowledgements…………………………………………………………………...iii List of Tables………………………………………………………………………....vii List of Figures…………………………………………………………………….….viii List of Reaction Schemes……………………………………………………….…….ix List of Abbreviations and Symbols……………………………………………...….…x List of Equations………………………………………………………………….….xiii 1 Introduction .